Investigation of the Wear Resistance Properties of Cr/CrN Multilayer Coatings against Sand Erosion

Author:

Naveed Muhammad1ORCID,Obrosov Aleksei1,Weiß Sabine1

Affiliation:

1. Chair of Materials and Physical Metallurgy, Brandenburg Technical University, Konrad Wachsmann Allee 17, 03046 Cottbus, Germany

Abstract

The wear of metallic components used in gas and steam turbines due to erosive sand particles leads to a tremendous decrease in their lifetime. This wear can be reduced by the use of suitable erosion resistant coatings resulting in lower maintenance costs. In this context, multilayer Cr/CrN PVD coatings using an industrial coater were designed and applied on Inconel 718, a material which finds its application in gas turbines. A variation in the bimodal period has been induced in order to achieve an optimal coating architecture providing optimum properties needed for the erosion resistant coatings. The coating was deposited using a single Cr-target with an induction of N2 during the nitriding phase at a temperature of 480–500°C and the coating thickness of 24–26 μm was kept constant throughout. The erosion tests were conducted at angles of 30°, 60°, and 90°. The sand used for the test is an irregular shaped SiO2. The erosion tests were followed by a detailed microscopic examination of the eroded coating structure in combination with nanoindentation and scratch tests.

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3