Enhancing the Mechanical Behaviour and Antibacterial Activity of Bioepoxy Using Hybrid Nanoparticles for Dental Applications

Author:

Mohammed Mohammed Razzaq1ORCID,Hadi Ahmed Namah2

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, University of Misan, Amarah, Iraq

2. Department of Biomedical Engineering, College of Engineering, University of Babylon, Hillah, Iraq

Abstract

The appropriate capability of handling several forces exerted inside the mouth, and preventing the adhesion and proliferation of oral microorganisms are among the most vital factors for achieving effective alternative dental materials to the damaged native. Nevertheless, lack of mechanical and antimicrobial properties of dental resins hinders their use in most clinical applications in dentistry. In the present study, the main aim was to provide bioepoxy composite biomaterials that could meet the required mechanical and antibacterial properties for dental related fields. Herein, highly biocompatible epoxy and hybrid reinforcing materials were utilised to produce a composite material, which could have features resembling those of original dental parts. Various weight fractions of nanosilver/nano-alumina particles at 1, 2, and 3 wt% were incorporated into the bioepoxy for improving the mechanical and antibacterial characteristics of the biocompatible epoxy resin. Three-point bending and Izod impact tests were performed to evaluate the flexure and impact strengths of the obtained nanocomposites. The morphology of pristine bioepoxy and nanoparticle reinforced bioepoxy composites was characterized by scanning electron microscopy. The influence of these fillers on the bioepoxy resin antibacterial sensitivity was assessed using the agar diffusion technique. Nanofiller contents have been revealed to have a remarkable role to play in tuning the mechanical properties of the nanocomposites; the flexure strength and modulus were higher when the total ratio of hybrid reinforcement was 2 wt%. In contrast, the addition of higher percentage of hybrid nanoparticles could cause deterioration in the flexure characteristics of nanocomposites, yet they were better than those of pristine epoxy. Regarding the impact strength, the enhancement in this property was only observed for the composite containing 1 wt% of AgNps-Al2O3; the impact strength was dropped gradually beyond this ratio. The antibacterial effectiveness of the nanocomposites was demonstrated to positively depend on the increase in AgNps mass fraction. Among all evaluated unmodified and modified bioepoxy, the nanocomposite containing 2.5 wt% of AgNps had the higher antibacterial activity against Escherichia coli and Staphylococcus aureus. Based on the attainable outcomes, the prepared composites, particularly at moderate levels of Al2O3-AgNps, could provide biocomposites having the potential to be utilised in several biomedical fields, particularly in dental technology.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials

Reference46 articles.

1. Biomaterials for dental implants: an overview;B. Muddugangadhar;International Journal of Oral Implantology and Clinical Research,2011

2. Effect of nano SiO2 particles on the morphology and mechanical properties of POSS nanocomposite dental resins

3. Antibacterial activity of dental composites containing zinc oxide nanoparticles;B. Aydin Sevinç;Journal of Biomedical Materials Research Part B: Applied Biomaterials,2010

4. Investigation of Mechanical Properties of Experimental Bis-GMA/TEGDMA Dental Composite Resins Containing Various Mass Fractions of Silica Nanoparticles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3