Pattern Recognition of Holographic Image Library Based on Deep Learning

Author:

Wu Bo12ORCID,Zheng Changlong1ORCID

Affiliation:

1. Faculty of Education, Northeast Normal University, Changchun 130021, China

2. High School Attached to Northeast Normal University, Changchun 130021, China

Abstract

The final loss function in the deep learning neural network is composed of other functions in the network. Due to the existence of a large number of non-linear functions such as activation functions in the network, the entire deep learning model presents the nature of a nonconvex function. As optimizing the nonconvex model is more difficult, the solution of the nonconvex function can only represent the local but not the global. The BP algorithm is an algorithm for updating parameters and is mainly applied to deep neural networks. In this article, we will study the volume holographic image library technology, design the basic optical storage path, realize single-point multistorage in the medium, and multiplex technology with simple structure to increase the information storage capacity of volume holography. We have studied a method to read out the holographic image library with the same diffraction efficiency. The test part of the system is to test the entire facial image pattern recognition system. The reliability and stability of the system have been tested for performance and function. Successful testing is the key to the quality and availability of the system. Therefore, this article first analyzes the rules of deep learning, combines the characteristics of image segmentation algorithms and pattern recognition models, designs the overall flow chart of the pattern recognition system, and then conducts a comprehensive inspection of the test mode to ensure that all important connections in the system pass through high-quality testing is guaranteed. Then in the systematic research of this paper, based on the composite threshold segmentation method of histogram polynomial fitting and the deep learning method of the U-NET model, the actual terahertz image is cut, and the two methods are organically combined to form terahertz. The coaxial hologram reconstructs the image for segmentation and finally completes the test of the system. After evaluation, the performance of the system can meet the needs of practical applications.

Funder

National Nature Science and Technology Major Project of the Ministry of Science and Technology of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Reference32 articles.

1. Color image encryption method combining computational holography and chaos;J. Wu;Journal of Optics,2021

2. Off-axis digital holographic imaging technology based on deep learning;M. G. Shan;Laboratory Research and Exploration,2021

3. 深度学习在数字全息显微成像中的应用

4. An image coding method for fusion display of virtual and real scenes with holographic stereoscopic view;Y. P. Liu;China Laser,2022

5. Synchronization of Markovian complex networks with input mode delay and Markovian directed communication via distributed dynamic event-triggered control

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3