Affiliation:
1. Nanjing Huaqing Intelligence Technology Co., Ltd, Nanjing 211135, Jiangsu, China
Abstract
Multiobjective Flexible Job Shop Scheduling Problem (MO-FJSP) is a scheduling problem used in manufacturing sectors to use energy efficiently and thriftily. The scheduling problem aims to increase productivity and reduce energy consumption via a mathematical model. With this paper, an effective genetic algorithm is proposed for MO-FJSP based on maximum completion time, total machine load, and bottleneck machine load. The solution method utilizes a hybrid multiobjective genetic algorithm. A combination of global selection and fast selection is used for initialization and obtaining a uniformly distributed initial population. The cross-variance operator is adaptively improved to enhance the searching in the population. Following that an elite retention mechanism is designed to address the possible limitations of the elite strategy in maintaining population diversity. As a result, an improved harmonic search algorithm is introduced to improve the quality of individuals in the elite pool. The proposed hybrid method is implemented in MATLAB R2018a. Tests were conducted using the benchmark Kacem test set, the BR data data set, and with the actual production cases. The algorithm succeeded in achieving 13 nondominated solutions in the initial 20 runs. Moreover, the method obtains the optimal value criterion for the solution accuracy factor. As a whole, results of the evaluation testify that the proposed method can be used to solve the MO-FJSP with high accuracy and fast convergence. The method also provides feasible and effective scheduling solutions for the decision-makers in actual production. Based on the promising results obtained, it is deduced that the method has a wide applicability range particularly in manufacturing sector.
Subject
Computer Science Applications,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献