An Effective Hybrid Multiobjective Flexible Job Shop Scheduling Problem Based on Improved Genetic Algorithm

Author:

Fang Junfeng1ORCID

Affiliation:

1. Nanjing Huaqing Intelligence Technology Co., Ltd, Nanjing 211135, Jiangsu, China

Abstract

Multiobjective Flexible Job Shop Scheduling Problem (MO-FJSP) is a scheduling problem used in manufacturing sectors to use energy efficiently and thriftily. The scheduling problem aims to increase productivity and reduce energy consumption via a mathematical model. With this paper, an effective genetic algorithm is proposed for MO-FJSP based on maximum completion time, total machine load, and bottleneck machine load. The solution method utilizes a hybrid multiobjective genetic algorithm. A combination of global selection and fast selection is used for initialization and obtaining a uniformly distributed initial population. The cross-variance operator is adaptively improved to enhance the searching in the population. Following that an elite retention mechanism is designed to address the possible limitations of the elite strategy in maintaining population diversity. As a result, an improved harmonic search algorithm is introduced to improve the quality of individuals in the elite pool. The proposed hybrid method is implemented in MATLAB R2018a. Tests were conducted using the benchmark Kacem test set, the BR data data set, and with the actual production cases. The algorithm succeeded in achieving 13 nondominated solutions in the initial 20 runs. Moreover, the method obtains the optimal value criterion for the solution accuracy factor. As a whole, results of the evaluation testify that the proposed method can be used to solve the MO-FJSP with high accuracy and fast convergence. The method also provides feasible and effective scheduling solutions for the decision-makers in actual production. Based on the promising results obtained, it is deduced that the method has a wide applicability range particularly in manufacturing sector.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3