Electrochemical Seismic Design and Artificial Intelligence System Modeling of High-Rise Steel Structure Buildings

Author:

Xia Wenjie1ORCID

Affiliation:

1. Jinan Engineering Polytechnic, Jinan City, Shandong Province 250000, China

Abstract

This study aims to improve the mechanical earthquake-resistance ability of high-rise buildings’ steel structures so that their safety performance is improved and their service life is prolonged. The simulation experiments on the response of the staggered truss steel structure are conducted in high-rise buildings to earthquake energy waves. First, MATLAB is used to build an experimental platform for earthquake-resistance evaluation of high-rise residential buildings. Through the high-rise building model training, it is found that the model meets the needs of the study. Second, the earthquake-resistance performance parameters, deformation recovery capacity, and dynamic response speed of the staggered truss steel structure are simulated and tested. After earthquake energy waves with different intensities are posed on the high-rise building model, the performance parameters of the staggered truss structure are tested, and the changes in the parameters of the structure are analyzed. Finally, the earthquake-resistance performance and post-earthquake recovery ability of the staggered truss structure are tested through comparative analysis. The results show that the interlayer displacement fluctuation of the staggered truss steel structure is the smallest, and the earthquake resistance performance is better than others under the energy waves of all kinds of earthquakes. Although its earthquake-resistance ability decreases with the duration of earthquakes, the reduction speed is slow. When the quake lasts 12 s, the resistance of the staggered truss structure is still greater than 2500 MPa. This study provides a reference for the staggered truss structure of high-rise buildings.

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3