An Auction-Based Bid Prediction Mechanism for Fog-Cloud Offloading Using Q-Learning

Author:

Besharati Reza1,Rezvani Mohammad Hossein1ORCID,Gilanian Sadeghi Mohammad Mehdi1

Affiliation:

1. Department of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Abstract

In the fog computing paradigm, if the computing resources of an end device are insufficient, the user’s tasks can be offloaded to nearby devices or the central cloud. In addition, due to the limited energy of mobile devices, optimal offloading is crucial. The method presented in this paper is based on the auction theory, which has been used in recent studies to optimize computation offloading. We propose a bid prediction mechanism using Q-learning. Nodes participating in the auction announce a bid value to the auctioneer entity, and the node with the highest bid value is the auction winner. Then, only the winning node has the right to offload the tasks on its upstream (parent) node. The main idea behind Q-learning is that it is stateless and only considers the current state to perform an action. The evaluation results show that the bid values predicted by the Q-learning method are near-optimal. On average, the proposed method consumes less energy than traditional and state-of-the-art techniques. Also, it reduces the execution time of tasks and leads to less consumption of network resources.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3