Characterization of Putative Virulence Factors of Pseudomonas aeruginosa Strain RBS Isolated from a Saltern, Tunisia: Effect of Metal Ion Cofactors on the Structure and the Activity of LasB

Author:

Rigane E.1ORCID,Dutoit R.2,Matthijs S.2,Brandt N.2,Flahaut S.3,Belghith K. S.1

Affiliation:

1. Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Route Sokra BP 1171, 3000 Sfax, Tunisia

2. Labiris Research Institute, Avenue Emile Gryzon 1, 1070 Brussels, Belgium

3. Laboratory of Applied Microbiology, EIB, Université Libre de Bruxelles, Avenue Emile Gryzon 1, 1070 Brussels, Belgium

Abstract

Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium able to survive in diverse environments such as soil, plants, freshwater, and seawater. P. aeruginosa can be an opportunistic pathogen to humans when their immune system is deficient. Its pathogenicity may be linked to the production of virulence factors. We isolated P. aeruginosa strain RBS from the saltern of Sfax in Tunisia. In this study, we characterized the halotolerance, antibiotic susceptibility, and some virulence factors of strain RBS. High NaCl concentrations inhibited growth and motility. However, biofilm formation was enhanced to protect bacteria against salt stress. Among the 18 antibiotics tested, quinolones and tetracycline showed a significant inhibitory effect on growth, motility, and biofilm formation of strain RBS. β-Lactams, however, did not have any inhibitory effect on neither bacterial growth nor motility. In some cases, resistance was due, in part, to biofilm formation. We also showed that RBS produces two proteases, LasB and AprA, which have been shown to be implicated in host infection. LasB was further characterized to study the role of metal ions in enzyme stability. It possesses two distinct metal ion-binding sites coordinating a calcium and a zinc ion. The effect of metal ion chelation was evaluated as well as substitutions of residues involved in metal ion binding. Impairing metal ion binding of LasB led to a loss of activity and a sharp decrease of stability. Our findings suggest that the binding of both metal ions is interdependent as the two metal ions’ binding sites are linked via a hydrogen bond network.

Funder

Labiris Research Institute

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decoding the TAome and computational insights into parDE toxin-antitoxin systems in Pseudomonas aeruginosa;Archives of Microbiology;2024-07-27

2. Genomic Islands in Pseudomonas Species;Microbial Genomic Islands in Adaptation and Pathogenicity;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3