Experimental Study on the Effect of CO2 on Phase Behavior Characteristics of Condensate Gas Reservoir

Author:

Hou Dali123ORCID,Jia Ying14ORCID,Shi Yunqing14,Zhao Rui2,Tang Hongming35,Sun Lei5

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Sinopec, Beijing 100083, China

2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, Sichuan 610059, China

3. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China

4. Petroleum Exploitation & Production Research Institute, Sinopec, Beijing 100083, China

5. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

Abstract

In this paper, the DBR all-visible mercury-free high-temperature and high-pressure multifunctional formation fluid PVT analyzer developed and produced by Schlumberger company is used to conduct an experimental study on phase behavior characteristics of one offshore high CO2 condensate gas wells. The experiments include two-phase flash experiment, constant composition expansion experiment (CCE experiment), and constant volume depletion experiment (CVD experiment). Experimental results show that the higher the CO2 content in the condensate gas system, the higher the gas-oil ratio of condensate gas, the greater the density of condensate oil, the higher the dew point pressure of condensate gas, the greater the relative volume of condensate gas, the smaller the amount of retrograde condensate oil. And the higher the CO2 content in the condensate gas system, the phase diagram is shifted to the left and up, the critical point of the phase diagram is shifted to the lower left, the smaller the area of the two-phase envelope, the lighter the condensate gas system, the condensate oil recovery is higher. The above experimental results revealed that CO2 is well soluble with condensate gas, the expansion capacity of the condensate gas system was slightly enhanced, and because CO2 has a good extraction capacity, the light components of condensate gas were constantly extracted, the retrograde condensate rate of condensate oil decreases, and the maximum retrograde condensate volume also decreased. However, the condensate oil was produced along with the natural gas, and the higher the CO2 content, the stronger the extraction, the more condensate oil was produced. It is mainly because CO2 has the strong gasification and extraction capacity, on the one hand, the retrograde condensation of condensate gas was inhibited, and on the other hand, reverse evaporation of condensate oil was enhanced. The above experimental results indicate the law of the effect of CO2 on the phase behavior characteristics of condensate gas reservoirs, providing theoretical basis and guidance for the efficient development of condensate gas reservoirs at sea.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

Reference20 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3