Study on the Influence Factors on Harvesting Capacity of a Piezoelectric Vibration Energy Harvesting System Covered on Curved Beam with Acoustic Black Hole

Author:

Xie Miaoxia1ORCID,Gao Fengwei1,Zhang Peng1,Wei Yuanqi1,Tong Meijuan1,He Yumin1ORCID,Yan Guanhai1

Affiliation:

1. School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

The acoustic black hole (ABH) structures have been shown to have great potential for energy harvesting. Within an ABH, the bending wave velocity decreases rapidly and the phase accumulates, resulting in localised energy accumulation. It is very significant that the energy can be harvested and power can be supplied for microelectronic devices. How to improve energy harvesting capacity is a problem that needs to be solved. Previous research on energy harvesting capacity of straight beams and flat plates with ABH has yielded a wealth of results. However, in practical engineering, curved beams are also commonly found. Given the differences in structure, it is of practical significance to study the influence factors on harvesting capacity of the piezoelectric vibration energy harvesting system covered on curved beam with acoustic black hole. First, the vibration characteristics of curved beam with ABH are analysed by the finite element method and localised energy accumulation is observed. Then, energy harvesting capacity is studied by means of the electromechanical coupling model in FEA; it has been found that energy harvesting capacity is lower in high frequency. The reason of this problem is analysed and solved by dividing the size of the piezoelectric sheet in an array layout. Based on this, the influence of array layout of piezoelectric cells on the energy harvesting capacity of the system is focused on. In addition, the influence of resistance value, material property, and curvature of curved beam on the energy harvesting capacity is analysed. Some meaningful results are obtained. These results provide the guidance to the design and optimisation for an energy harvesting system covered on curved beam with ABH.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference39 articles.

1. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval;M. A. Mironov;Soviet Physics Acoustics-USSR,1988

2. Propagation of localised flexural vibrations along plate edges described by a power law;V. V. Krylov;Proceedings of the Institute of Acoustics,2000

3. Acoustic ‘black holes’ for flexural waves as effective vibration dampers

4. Dynamic Property Investigation of Sandwich Acoustic Black Hole Beam with Clamped-Free Boundary Condition

5. Dynamic property investigation of segmented acoustic black hole beam with different power-law thicknesses

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3