Reactive Message Passing for Scalable Bayesian Inference

Author:

Bagaev Dmitry1ORCID,de Vries Bert1ORCID

Affiliation:

1. Eindhoven University of Technology, Eindhoven, Netherlands

Abstract

We introduce reactive message passing (RMP) as a framework for executing schedule-free, scalable, and, potentially, more robust message passing-based inference in a factor graph representation of a probabilistic model. RMP is based on the reactive programming style, which only describes how nodes in a factor graph react to changes in connected nodes. We recognize reactive programming as the suitable programming abstraction for message passing-based methods that improve robustness, scalability, and execution time of the inference procedure and are useful for all future implementations of message passing methods. We also present our own implementation ReactiveMP.jl, which is a Julia package for realizing RMP through minimization of a constrained Bethe free energy. By user-defined specification of local form and factorization constraints on the variational posterior distribution, ReactiveMP.jl executes hybrid message passing algorithms including belief propagation, variational message passing, expectation propagation, and expectation maximization update rules. Experimental results demonstrate the great performance of our RMP implementation compared to other Julia packages for Bayesian inference across a range of probabilistic models. In particular, we show that the RMP framework is capable of performing Bayesian inference for large-scale probabilistic state-space models with hundreds of thousands of random variables on a standard laptop computer.

Funder

Rijksdienst voor Ondernemend Nederland

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference47 articles.

1. TensorFlow: large-scale machine learning on heterogeneous systems;M. Abadi,2015

2. PyTorch: an imperative style, high-performance deep learning library;P. Adam,2019

3. The free-energy principle: a rough guide to the brain?

4. Factor graphs and the sum-product algorithm;F. R. Kschischang;IEEE Transactions on Information Theory,2001

5. Residual belief propagation: informed scheduling for asynchronous message passing;E. Gal,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Source inference for misinformation spreading on hypergraphs;Chaos, Solitons & Fractals;2024-10

2. Multi-Agent Trajectory Planning with NUV Priors;2024 American Control Conference (ACC);2024-07-10

3. Toward Design of Synthetic Active Inference Agents by Mere Mortals;Active Inference;2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3