Natural History of the Bruise: Formation, Elimination, and Biological Effects of Oxidized Hemoglobin

Author:

Jeney Viktória12,Eaton John W.13,Balla György24,Balla József1

Affiliation:

1. Department of Medicine, University of Debrecen, Debrecen 4012, Hungary

2. MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, Debrecen 4012, Hungary

3. Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40059, USA

4. Department of Pediatrics, University of Debrecen, Debrecen 4012, Hungary

Abstract

Numerous disease states are associated with hemolysis or hemorrhage. Because red cells in the extravascular space tend to lyse quickly, hemoglobin (Hb) is released and is prone to autoxidation producing MetHb. Inorganic and organic peroxides may convert Hb and MetHb to higher oxidation states such as ferrylHb. FerrylHb is not a single chemical entity but is a mixture of globin- and porphyrin-centered radicals and covalently cross-linked Hb multimers. Oxidized Hb species are potent prooxidants caused mainly by heme release from oxidized Hb. Moreover, ferrylHb is a strong proinflammatory agonist that targets vascular endothelial cells. This proinflammatory effect of ferrylHb requires actin polymerization, is characterized by the upregulation of proinflammatory adhesion molecules, and is independent of heme release. Deleterious effects of native Hb are controlled by haptoglobin (Hp) that binds cell-free Hb avidly and facilitates its removal from circulation through the CD163 macrophage scavenger receptor-mediated endocytosis. Under circumstances of Hb oxidation, Hp can prevent heme release from MetHb, but unfortunately the Hp-mediated removal of Hb is severely compromised when Hb is structurally altered such as in ferrylHb allowing deleterious downstream reactions to occur even in the presence of Hp.

Funder

Hungarian Academy of Sciences

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3