Effect of Tillage Treatments of Hairy Vetch Residues on Soil Inorganic-N Distributions and Corn Growth in a Subtropical Region

Author:

Anugroho Fajri1ORCID,Kitou Makoto2

Affiliation:

1. Department of Agricultural Engineering, Faculty of Agricultural Technology, University of Brawijaya, Veteran Street, Malang 65145, Indonesia

2. Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan

Abstract

Conservation tillage has many advantages in crop production and weed control management. N-residue of hairy vetch as a green manure cover crop through tillage and no-tillage practices may increase inorganic-N level in soils and contribute to sustainable agriculture. Prior to corn cultivation, hairy vetch was cut after growing in the pots for 103 days. Six treated soils were prepared for no-tillage treatments (SRN, RN, and CN) and for tillage treatments (SRT, RT, and CT), where the soils were treated by shoot and root of hairy vetch residues, only root residues, and without application of hairy vetch as a control, respectively. Seeds of corn (Zea mays L.) were sown and grown for 56 days after sowing. The shoot and root biomasses of corn under no-tillage were higher than those of tillage. Furthermore, the shoot biomass of corn in both SRN and SRT were higher than that in other treatments. The root biomass of corn was higher in upper layers (0–5 cm depth) and deeper layers (>10 cm depth) than in middle layers (5–10 cm depth) of soils. In the upper layer, the NH4-N contents of no-tillage were higher at 9 and 23 DAT than those of tillage. The NH4-N content of the soils for no-tillage in the middle layer and the deeper layer was lower than that of the CT treatment. The NO3-N content of no-tillage in the middle and deeper layers was lower than that of CT at 23 and 65 DAT. N-uptake of corn in both no-tillage and tillage treatments with hairy vetch addition was higher than that of the control.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Hindawi Limited

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3