Where Do Phosphosites Come from and Where Do They Go after Gene Duplication?

Author:

Diss Guillaume1,Freschi Luca1,Landry Christian R.1

Affiliation:

1. Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, 1030, Avenue de la Médecine, Québec, QC, Canada G1V 0A6

Abstract

Gene duplication followed by divergence is an important mechanism that leads to molecular innovation. Divergence of paralogous genes can be achieved at functional and regulatory levels. Whereas regulatory divergence at the transcriptional level is well documented, little is known about divergence of posttranslational modifications (PTMs). Protein phosphorylation, one of the most important PTMs, has recently been shown to be an important determinant of the retention of paralogous genes. Here we test whether gains and losses of phosphorylated amino acids after gene duplication may specifically modify the regulation of these duplicated proteins. We show that when phosphosites are lost in one paralog, transitions from phosphorylated serines and threonines are significantly biased toward negatively charged amino acids, which can mimic their phosphorylated status in a constitutive manner. Our analyses support the hypothesis that divergence between paralogs can be generated by a loss of the posttranslational regulatory control on a function rather than by the complete loss of the function itself. Surprisingly, these favoured transitions cannot be reached by single mutational steps, which suggests that the function of a phosphosite needs to be completely abolished before it is restored through substitution by these phosphomimetic residues. We conclude by discussing how gene duplication could facilitate the transitions between phosphorylated and phosphomimetic amino acids.

Funder

Canadian Institutes of Health Research

Publisher

Hindawi Limited

Subject

Earth-Surface Processes

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intrinsic disorder and posttranslational modification: an evolutionary perspective;Structure and Intrinsic Disorder in Enzymology;2023

2. The evolutionary scaling of cellular traits imposed by the drift barrier;Proceedings of the National Academy of Sciences;2020-04-28

3. A Theoretical Framework for Evolutionary Cell Biology;Journal of Molecular Biology;2020-03

4. What is the main mechanism of the origin of phosphorylation sites? Still an open question;Journal of Systematics and Evolution;2017-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3