A Novel Seepage Safety Monitoring Model of CFRD with Slab Cracks Using Monitoring Data

Author:

Shi Zhongwen123,Gu Chongshi123ORCID,Zhao Erfeng123ORCID,Xu Bo4ORCID

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 21009, China

2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

3. National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China

4. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

Abstract

The traditional regression model usually simulates the influence of water pressure and rainfall in the early stage based on experience, but it is not suitable. To solve this problem, the normal distribution curve is used to simulate the lagging effect of water pressure and rainfall on dam seepage. In view of problem of slab cracks, the influence of cracks on seepage is analyzed. In this paper, a safety monitoring model for concrete face rockfill dam (CFRD) seepage with cracks considering the lagging effect is proposed, in which slab cracks are considered as an influencing factor. The radial basis function neural network (RBFNN) optimized by genetic algorithm (GA) is used to establish a safety monitoring model for a CFRD seepage. Seepage of the dam is predicted by this model, whose results are similar to the monitoring data, which indicates that the method has certain applicability. Through the analysis of the proportion of factors affecting CFRD seepage, it is found that the rainfall component has the greatest impact on the total seepage, accounting for more than 50%, and the crack component accounts for about 10%. Finally, through the cloud model, the monitoring index of CFRD seepage is worked out, which has certain guiding significance for the treatment of abnormal seepage monitoring data.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3