Thermal and Electric Field-Dependent Evolution of Domain Structures in Polycrystalline BaTiO3 Using the 3D-XRD Technique

Author:

Varlioglu Mesut1,Lienert Ulrich2,Park Jun-Sang3,Jones Jacob L.4ORCID,Üstündag Ersan1

Affiliation:

1. Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA

2. Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA

3. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA

4. Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA

Abstract

The evolution of ferroelectric domain structures inside a single grain embedded in a polycrystalline BaTiO3 ceramic was investigated under temperature and electric field using the three-dimensional X-ray diffraction (3D-XRD) method. The orientation of domains within the grain was studied during the phase transformation from the cubic to tetragonal crystal structure. The peak widths broadened from 0.10 ± 0.01 to 0.29±0.08 along the azimuthal direction during cooling. Four individual tetragonal domain structures were developed from the cubic grain. A twinning model based on {101} habit planes is discussed. While the twinning model predicts 89.47 misorientation between 90 domains and 1.049 misorientation between domain variants, the measured misorientations neither support the twinning model nor are the domain structures mutually orthogonal. The average misorientation of the domain structures at room temperature with respect to the cubic grain was about 0.3. Upon application of an electric field, the volume fractions of the domain structures changed systematically favoring growth of domain structures with small polarization angle with respect to applied field direction. No rotation of domain structures was observed upon application of an electric field which is consistent with domain boundary migration.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3