Advancements in Model Parameter Estimation for Proton Exchange Membrane Fuel Cells via Enhanced Artificial Hummingbird Algorithm

Author:

Shaheen Abdullah M.ORCID,Alassaf AbdullahORCID,Alsaleh IbrahimORCID,El-Fergany Attia A.ORCID

Abstract

Fuel cells (FCs) have garnered significant attention due to their versatile applications, but their nonlinear characteristics pose challenges in the modeling process. This research presents a unique enhanced artificial hummingbird algorithm (EAHA) aimed at identifying the seven unknown parameters of the proton exchange membrane fuel cells (PEMFCs) stack by utilizing their experimental datasets. To accomplish this, the objective is to achieve accurate current/voltage (I/V) curves where a cost function is defined using the aggregation of quadratic deviations (AQD) between the measured dataset points and the appropriate model‐based estimations. The presented EAHA combines several territorial foraging techniques with a linear regulating mechanism. The performance of the conventional AHA is compared with the suggested EAHA using three commonly employed PEMFC modules. Furthermore, a comparative analysis is conducted against previously published methodologies and newly developed optimizers such as the equilibrium optimizer (EO), social networking search (SNS) technique, slim mold algorithm (SMA), heap‐based optimizer (HBO), and African vultures optimization (AVO) technique. The findings are compared to existing methodologies and other state‐of‐the‐art optimizers, providing valuable insights into the efficacy of the proposed approach. For the 250 W PEMFC stack, the proposed EAHA shows improvements of 2.966%, 6.493%, 1.491%, 7.080%, 1.131%, and 2.875% over AHA, AVO, EO, HBO, SMA, and SNS, respectively, depending on the mean AQD values. Similar findings are attained for the other two stacks. For example, for the test case of the BCS 500 W PEMFCs stack, the proposed EAHA demonstrates improvements of 64.228%, 82.859%, 66.140%, 81.156%, 46.302%, and 71.635% over AHA, AVO, EO, HBO, SMA, and SNS, respectively.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3