An Efficient Computing Offloading Scheme Based on Privacy-Preserving in Mobile Edge Computing Networks

Author:

Pang Shanchen1ORCID,Sun Huanhuan1ORCID,Wang Min2,Wang Shuyu1ORCID,Qiao Sibo1ORCID,Xiong Neal N.3ORCID

Affiliation:

1. Department of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China

2. Department of Control Science and Engineering, China University of Petroleum, Qingdao 266580, China

3. Department of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK, USA

Abstract

Computation offloading is an important technology to achieve lower delay communication and improve the experience of service (EoS) in mobile edge computing (MEC). Due to the openness of wireless links and the limitation of computing resources in mobile computing process, the privacy of users is easy to leak, and the completion time of tasks is difficult to guarantee. In this paper, we propose an efficient computing offloading algorithm based on privacy-preserving (ECOAP), which solves the privacy problem of offloading users through the encryption technology. To avoid the algorithm falling into local optimum and reduce the offloading user energy consumption and task completion delay in the case of encryption, we use the improved fast nondominated sorting genetic algorithm (INSGA-II) to obtain the optimal offloading strategy set. We obtain the optimal offloading strategy by using the methods of min-max normalization and simple additive weighting based on the optimal offloading strategy set. The ECOAP algorithm can preserve user privacy and reduce task completion time and user energy consumption effectively by comparing with other algorithms.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3