Rapid Elimination of Blood Alcohol Using Erythrocytes: Mathematical Modeling and In Vitro Study

Author:

Alexandrovich Yuliya G.1,Kosenko Elena A.2ORCID,Sinauridze Elena I.13ORCID,Obydennyi Sergey I.14ORCID,Kireev Igor I.5,Ataullakhanov Fazoil I.136ORCID,Kaminsky Yuriy G.2

Affiliation:

1. Laboratory of Biophysics and Physiology of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Kosygin Street 4, Moscow 119334, Russia

2. Laboratory of Modeling and Bioinformatics, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Street 3, Pyshchino, Moscow Region 142290, Russia

3. Laboratory of Biophysics, National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology Named after Dmitry Rogachev, Russian Ministry of Health, Samory Mashela Street 1, GSP-7, Moscow 117198, Russia

4. Laboratory of Cell Hemostasis and Thrombosis, National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology Named after Dmitry Rogachev, Russian Ministry of Health, Samory Mashela Street 1, GSP-7, Moscow 117198, Russia

5. Department of Electron Microscopy, Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Building 40, Moscow 119992, Russia

6. Faculty of Physics, Moscow State University, Leninskie Gory 1, Building 2, Moscow 119991, Russia

Abstract

Erythrocytes (RBCs) loaded with alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALD) can metabolize plasma ethanol and acetaldehyde but with low efficiency. We investigated the rate-limiting factors in ethanol oxidation by these enzymes loaded into RBCs. Mathematical modeling and in vitro experiments on human RBCs loaded simultaneously with ADH and ALD (by hypoosmotic dialysis) were performed. The simulation showed that the rate of nicotinamide-adenine dinucleotide (NAD+) generation in RBC glycolysis, but not the activities of the loaded enzymes, is the rate-limiting step in external ethanol oxidation. The rate of oxidation could be increased if RBCs are supplemented by NAD+ and pyruvate. Our experimental data verified this theoretical conclusion. RBCs loaded with the complete system of ADH, ALD, NAD+, and pyruvate metabolized ethanol 20–40 times faster than reported in previous studies. The one-step procedure of hypoosmotic dialysis is the optimal method to encapsulate ADH and ALD in RBCs after cell recovery, encapsulation yield, osmotic resistance, and RBC-indexes. Consequently, transfusion of the RBCs loaded with the complete metabolic system, including ADH, ALD, pyruvate, and NAD+ in the patients with alcohol intoxication, may be a promising method for rapid detoxification of blood alcohol based on metabolism.

Funder

Russian Foundation for Basic Research

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference40 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3