Experimental Study on Friction Sliding Performance of Rubber Bearings in Bridges

Author:

Li Yue1ORCID,Wu Qiqi1

Affiliation:

1. School of Civil Engineering, North China University of Technology, Beijing 100144, China

Abstract

To fully ascertain the ultimate shear failure state and the friction sliding performance of laminated rubber bearings in bridges, a series of cyclic loading tests were conducted. The energy dissipation characteristics of the laminated rubber bearings with two end plates, rubber bearings with unilateral friction sliding, and lead rubber bearing (LRB) under low-frequency cyclic loads were compared and analyzed. The results showed the following. (1) The ultimate shear deformation of the rubber bearings with two end plates could reach 300% to 400% of the rubber layer thickness. The energy dissipation capacity of the bearings was weak, and the hysteresis curves presented narrow zonal shapes. (2) The rubber bearings with unilateral friction sliding had similar energy dissipation capacities compared to the LRB. With the increase of the sliding distance, the dissipated energy continuously enlarged. The shear deformation of the bearing was no longer increased after reaching the maximum. After the test, the bearings remained in a good condition. The hysteresis curves of the load and displacement presented bilinear shapes. (3) Under the cyclic loading, the energy dissipation capacity of LRB was stable. The hysteresis curves of LRB were always fuller than the laminated rubber bearings.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3