Estimation on Reliability Models of Bearing Failure Data

Author:

Xintao Xia12ORCID,Zhen Chang1ORCID,Lijun Zhang3ORCID,Xiaowei Yang4

Affiliation:

1. Mechatronics Engineering College, Henan University of Science and Technology, Luoyang 471003, China

2. Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province, Henan University of Science and Technology, Luoyang 471003, China

3. National Center for Material Service Safety, University of Science and Technology Beijing, Beijing 10083, China

4. Luoyang Bearing Research Institute Co. Ltd., Luoyang 471039, China

Abstract

The failure data of bearing products is random and discrete and shows evident uncertainty. Is it accurate and reliable to use Weibull distribution to represent the failure model of product? The Weibull distribution, log-normal distribution, and an improved maximum entropy probability distribution were compared and analyzed to find an optimum and precise reliability analysis model. By utilizing computer simulation technology and k-s hypothesis testing, the feasibility of three models was verified, and the reliability of different models obtained via practical bearing failure data was compared and analyzed. The research indicates that the reliability model of two-parameter Weibull distribution does not apply to all situations, and sometimes, two-parameter log-normal distribution model is more precise and feasible; compared to three-parameter log-normal distribution model, the three-parameter Weibull distribution manifests better accuracy but still does not apply to all cases, while the novel proposed model of improved maximum entropy probability distribution fits not only all kinds of known distributions but also poor information issues with unknown probability distribution, prior information, or trends, so it is an ideal reliability analysis model with least error at present.

Funder

Natural Science Foundation of Henan Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3