Nanomaterials in Nanophotonics Structure for Performing All-Optical 2 × 1 Multiplexer Based on Elliptical IMI-Plasmonic Waveguides

Author:

Mustafa Sajjad Mohanad1ORCID,Karimi Gholamreza1ORCID,Malek Shahi Mazdak Rad1,Abdulnabi Saif Hasan234ORCID

Affiliation:

1. Electrical Engineering Department, Faculty of Electrical and Computer Engineering, Razi University, 6714967346, Kermanshah, Iran

2. Department of Electronic and Communications Engineering, Faculty of Engineering, University of Kufa, Kufa Street, Najaf 54001, Iraq

3. Department of Electrical Engineering, College of Engineering, University of Baghdad, Al-Jadriya, Baghdad 10001, Iraq

4. Department of Computer Techniques Engineering, Information Technology College, Imam Ja’afar Al-Sadiq University, Maysan Street, Najaf 54001, Iraq

Abstract

In this study, an all-optical multiplexer (Mux) based on elliptical insulator-metal-insulator (IMI) plasmonic waveguides is designed. The area of the proposed structure is very small (400 nm × 400 nm) which operates at a wavelength of 1,550 nm. The developed device utilizes constructive and destructive interferences between the input signals and the selector signal. This structure is less complex and has lower loss compared to the previous works. Transmission (T), contrast ratio (CR), modulation depth (MD), insertion loss (IL), and contrast loss (CL) are the five parameters that describe the performance of the plasmonic Mux. The transmission threshold between logic 0 and logic 1 is 0.5. Moreover, the maximum transmission efficiency of the device is 163%. Moreover, based on the MD value of 95.09%, the dimensions of the proposed structure are excellent and optimal. The proposed plasmonic Mux structure contributes substantially to developing an all-optical arithmetic logic unit (ALU) and all-optical signal processing nanocircuits. The finite element method (FEM) simulates the proposed plasmonic multiplexer with COMSOL Multiphysics 5.4 software.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Ceramics and Composites,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3