Remote Sensing Image Fusion Method Based on Progressive Cascaded Deep Residual Network

Author:

Li Jing1ORCID,Hu Hongwu1,Lei Lilan1,Li Jin2

Affiliation:

1. Yichun University, Yichun, 336000 Jiangxi, China

2. Southwest Medical University, Luzhou, 646000 Sichuan, China

Abstract

With the rapid development of deep learning in recent years, it has shown excellent performance in various image and video processing tasks. In addition, it also has a great role in promoting the spatio-temporal fusion of remote sensing images. The reconstructed image can give people a good visual experience. The invention relates to a remote sensing image fusion method based on a progressive cascade deep residual network and provides an end-to-end progressive cascade deep residual network model for remote sensing image fusion. The use of the MSE loss function may cause oversmoothing of the fused image, so a new joint loss function is defined to capture finer spatial information to improve the spatial resolution of the fused image. Resize-convolution is used to replace the transposed convolution to eliminate the checkerboard effect in the fused image caused by the transposed convolution. Through the experiments on the remote sensing image fusion simulation and real datasets of multiple satellites, the data results of the proposed algorithm are more than 5.25% better than those of the comparative algorithm in the average quantification. The calculation time and system resource occupation are also reduced, which has important theoretical significance and application value in the field of artificial intelligence and image processing. It will play a certain role in promoting the theoretical research and application of remote sensing image fusion.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3