Association Mining of Near Misses in Hydropower Engineering Construction Based on Convolutional Neural Network Text Classification

Author:

Chen Shu1,Xi Junbo2,Chen Yun1ORCID,Zhao Jinfan1

Affiliation:

1. Department of Engineering Management, College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China

2. Department of Engineering Management, College of Economics and Management, China Three Gorges University, Yichang, Hubei 443002, China

Abstract

Accidents of various types in the construction of hydropower engineering projects occur frequently, which leads to significant numbers of casualties and economic losses. Identifying and eliminating near misses are a significant means of preventing accidents. Mining near-miss data can provide valuable information on how to mitigate and control hazards. However, most of the data generated in the construction of hydropower engineering projects are semi-structured text data without unified standard expression, so data association analysis is time-consuming and labor-intensive. Thus, an artificial intelligence (AI) automatic classification method based on a convolutional neural network (CNN) is adopted to obtain structured data on near-miss locations and near-miss types from safety records. The apriori algorithm is used to further mine the associations between “locations” and “types” by scanning structured data. The association results are visualized using a network diagram. A Sankey diagram is used to reveal the information flow of near-miss specific objects using the “location ⟶ type” strong association rule. The proposed method combines text classification, association rules, and the Sankey diagrams and provides a novel approach for mining semi-structured text. Moreover, the method is proven to be useful and efficient for exploring near-miss distribution laws in hydropower engineering construction to reduce the possibility of accidents and efficiently improve the safety level of hydropower engineering construction sites.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3