Identification of Susceptibility Modules and Genes for Cardiovascular Disease in Diabetic Patients Using WGCNA Analysis

Author:

Liang Weiwei1ORCID,Sun Fangfang23ORCID,Zhao Yiming1ORCID,Shan Lizhen1,Lou Hanyu1ORCID

Affiliation:

1. Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

2. Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, China

3. Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, China

Abstract

Objective. To identify susceptibility modules and genes for cardiovascular disease in diabetic patients using weighted gene coexpression network analysis (WGCNA). Methods. The raw data of GSE13760 were downloaded from the Gene Expression Omnibus (GEO) website. Genes with a false discovery rate<0.05 and a log2 fold change0.5 were included in the analysis. WGCNA was used to build a gene coexpression network, screen important modules, and filter the hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the genes in modules with clinical interest. Genes with a significance over 0.2 and a module membership over 0.8 were used as hub genes. Subsequently, we screened these hub genes in the published genome-wide SNP data of cardiovascular disease. The overlapped genes were defined as key genes. Results. Fourteen gene coexpression modules were constructed via WGCNA analysis. Module greenyellow was mostly significantly correlated with diabetes. The GO analysis showed that genes in the module greenyellow were mainly enriched in extracellular matrix organization, extracellular exosome, and calcium ion binding. The KEGG analysis showed that the genes in the module greenyellow were mainly enriched in antigen processing and presentation, phagosome. Fifteen genes were identified as hub genes. Finally, HLA-DRB1, LRP1, and MMP2 were identified as key genes. Conclusion. This was the first study that used the WGCNA method to construct a coexpression network to explore diabetes-associated susceptibility modules and genes for cardiovascular disease. Our study identified a module and several key genes that acted as essential components in the etiology of diabetes-associated cardiovascular disease, which may enhance our fundamental knowledge of the molecular mechanisms underlying this disease.

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3