Effect of Mortar Constraint Conditions on Pullout Behavior of GFRP Soil Nails

Author:

Chen Zhi1,Que Mengke1,Zheng Lifei2ORCID,Li Xiaoqinq2ORCID,Sun Yang1

Affiliation:

1. School of Civil Engineering Architecture and Environment, Hubei University of Technology, Wuhan 430068, China

2. School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Glass fiber reinforced polymer (GFRP) bars are safe, light, and environmentally friendly and, hence, have emerged as desirable alternatives to traditional steel reinforcements in soil nailing wall reinforcement. The loads experienced by GFRP soil nails are transmitted through bonding with mortar and the surrounding soil mass. Constraints of the soil mass on mortar affect the pullout performance of the nails. This paper presents a laboratory test study on the influence of different mortar constraint conditions on the pullout behavior of GFRP soil nails. The results indicated that single loading or cyclic loading has a negligible effect on the failure modes of specimens under different constraints. Therefore, all specimens underwent the same mode of failure, i.e., splitting failure of the mortar. The ultimate pullout force associated with single loading under strong constraint conditions was 77% higher than that under unconstrained conditions, and the anchorage depth increased from 0.6 m to 1.0 m. The load-slip curves obtained for unconstrained conditions and strong constraint conditions were approximately straight lines and double broken lines, respectively. The ultimate tensile stress of GFRP soil nails exceeds the tensile strength of ordinary steel bars, indicating that these nails have sufficient strength reserve.

Funder

Science and Technology Project of Wuhan Urban and Rural Construction Bureau

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3