Multimode Process Monitoring Method Based on Multiblock Projection Nonnegative Matrix Factorization

Author:

Wang Yan1ORCID,Zhao Yu-Bo1,Li Chuang1,Zhu Chuan-Qian1,Han Shuai-shuai1,Gu Xiao-Guang23ORCID

Affiliation:

1. School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

2. Intelligent Manufacturing Big Data Platform (Zhengzhou) R&D Center, Zhengzhou Normal University, Zhengzhou 450044, China

3. School of Business, Nanjing University, Nanjing 210093, China

Abstract

A multimode process monitoring method based on multiblock projection nonnegative matrix factorization (MPNMF) is proposed for traditional process monitoring methods which often adopt global model of data and ignore local information of data. Firstly, the training data set of each mode is partitioned by the complete link algorithm and the multivariate data space is divided into several subblocks. Then, the projection nonnegative matrix factorization (PNMF) algorithm is used to model each subspace of each mode separately. A joint probabilistic statistic index is defined to identify the running modes of the process data. Finally, the Bayesian information criterion (BIC) is used to synthesize the statistics of each subblock and construct a new statistic for process monitoring. The proposed process monitoring method is applied to the TE process to verify its effectiveness.

Funder

Open Research Fund of Zhengzhou Normal University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3