Hybrid Effect of Wollastonite Fiber and Carbon Fiber on the Mechanical Properties of Oil Well Cement Pastes

Author:

Zhu Jianglin12ORCID,Wei Jiangxiong1,Yu Qijun1,Xu Mingbiao3,Luo Yuwei4

Affiliation:

1. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510000, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, China

3. School of Petroleum Engineering, Yangtze University, Wuhan 430000, China

4. China Oilfield Services Limited Oilfield Chemicals Division, Beijing 100000, China

Abstract

Oil well cement is a type of natural brittle material that cannot be used directly in cementing operations. Fiber is a type of material that can effectively improve the strength and toughness of cement stone, and hybrid fiber materials can more effectively improve the performance of a cement sample. To overcome the natural defects of oil well cement, the new mineral fiber, i.e., wollastonite fiber, and common carbon fiber were used in oil well cement, and the micromorphology, mechanical properties, and stress-strain behavior of the cement were evaluated. The experimental results show that carbon fiber and wollastonite fiber are randomly distributed in the cement paste. The mechanical properties of the cement paste are improved by bridging and pulling out. The compressive strength, flexural strength, and impact strength of cement stone containing only carbon fiber or wollastonite fiber are higher than those of the pure cement, but too many fibers are not conducive to the development of mechanical properties. A mixture of 0.3% carbon fiber with 6% wollastonite fiber in oil well cement slurry results in a greater increase in compressive strength, flexural strength, and impact strength. In addition, compared with blank cement stone, the strain of the mixed cement stone increases substantially, and the elastic modulus decreases by 37.8%. The experimental results supply technical support for the design of a high-performance cement slurry system.

Funder

National Science and Technology Major Project

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3