Jiao-Tai-Wan Ameliorates Depressive-Like Behavior through the A1R Pathway in Ovariectomized Mice after Unpredictable Chronic Stress

Author:

Xiang Lina1,Feng Yuan2,Hu Qianqian3,Zhu Jiahui4,Ye Ren5ORCID,Yuan Zhengzhong5ORCID

Affiliation:

1. Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang Province 325000, China

2. Wujiang District Hospital of Traditional Chinese Medicine, Suzhou City, Suzhou, Jiangsu Province 215000, China

3. Wenzhou Hospital of TCM Affiliated to Zhejiang Chinese Medicine University, Wenzhou, 310053 Zhejiang Province, China

4. Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China

5. Department of Traditional Chinese Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang Province 325000, China

Abstract

Objective. This study was aimed at observing the effect Jiao-Tai-Wan in menopausal depression. Methods. In this paper, we used ovariectomized mice subjected to chronic unpredictable stress as a menopausal depression model. After the chronic stress, mice were administrated with JTW (3.3 and 6.6mg/kg) and imipramine (10 mg/kg) for 14 days. On the 14th day, mice were subjected to the behavior test like the forced swim test, tail suspension test, and locomotor activity or were sacrificed to assess the protein changes in different brain regions. Results. The administration of JTW at doses of 3.3 and 6.6mg/kg (p.o.) significantly shortened the duration of immobility in forced swim and tail suspension tests. There was no obvious difference in locomotor activity among all the groups. The western blot analysis data indicated that treatment with JTW (3.3 and 6.6 mg/kg, p.o.) prominently increased the A1R protein and the downstream protein ERK1/2 levels in the prefrontal cortex and hippocampus. However, the administration of JTW did not influence c-Fos protein in either the prefrontal cortex or hippocampus. Conclusion. Our findings suggest that JTW plays a vital role in ameliorating menopausal depression symptoms in the A1R-ERK1/2 pathway in the prefrontal cortex and hippocampus.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3