Safety Assessment and a Parametric Study of Forward Collision-Avoidance Assist Based on Real-World Crash Simulations

Author:

Seyedi MohammadReza1ORCID,Koloushani MohammadReza1ORCID,Jung Sungmoon1ORCID,Vanli Arda2ORCID

Affiliation:

1. Florida State University, FAMU-FSU College of Engineering, Department of Civil and Enviromental Engineering, Tallahassee, FL 32306, USA

2. Florida State University, FAMU-FSU College of Engineering, Department of Industrial & Manufacturing Engineering, Tallahassee, FL 32306, USA

Abstract

In this study, we selected four real-world rear-end crash scenarios with different crash characteristics. The vehicles involved in those crashes were not equipped with any crash avoidance systems. We then used the accident reconstruction method to build those crash scenarios in PC-Crash software. Then, different FCW/AEB safety algorithms have been defined for a subject vehicle model in each crash scenario and each scenario was simulated for a set of input parameters such as vehicle speed, brake intensity, and driver reaction time. The range and distribution of input parameters were extracted from the related field crash data and available literature. A total number of 16000 simulations have been conducted which produced input-output datasets for further investigations. Finally, the effects of input parameters on simulation outcomes including crash occurrence, AEB activation, injury risk, and vehicle damage have been quantified using the Boruta algorithm. The results indicated that the overall effectiveness of the AEB system was a 57% reduction of rear-end crashes, a 52% reduction of injury severity (striking vehicle’s passengers), and a 47% reduction of damages for striking vehicles. The results also showed that the available AEB algorithms were more effective for the average speed equal to or less than 80 kmph. The speed of the subject vehicle, type of AEB algorithm, sensor detection range, and driver reaction time were the most important parameters on crash outcomes. In addition, the results indicated that the performance of FCW had a direct impact on the effectiveness of the AEB system for the integrated FCW + AEB system.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3