Construction of a Novel Diagnostic Model Based on Ferroptosis-Related Genes for Hepatocellular Carcinoma Using Machine and Deep Learning Methods

Author:

Yi Shiming1,Zhang Chunlei2,Li Ming3,Wang Jiafeng4ORCID

Affiliation:

1. Department of Hepatobiliary Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China

2. Department of Anus and Colorectal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China

3. Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China

4. Department of Hepatobiliary Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, China

Abstract

Hepatocellular carcinoma (HCC) is one of the most general malignant tumors. Ferroptosis, a type of necrotic cell death that is oxidative and iron-dependent, has a strong correlation with the development of tumors and the progression of cancer. The present study was designed to identify potential diagnostic Ferroptosis-related genes (FRGs) using machine learning. From GEO datasets, two publicly available gene expression profiles (GSE65372 and GSE84402) from HCC and nontumor tissues were retrieved. The GSE65372 database was used to screen for FRGs with differential expression between HCC cases and nontumor specimens. Following this, a pathway enrichment analysis of FRGs was carried out. In order to locate potential biomarkers, an analysis using the support vector machine recursive feature elimination (SVM-RFE) model and the LASSO regression model were carried out. The levels of the novel biomarkers were validated further using data from the GSE84402 dataset and the TCGA datasets. In this study, 40 of 237 FRGs exhibited a dysregulated level between HCC specimens and nontumor specimens from GSE65372, including 27 increased and 13 decreased genes. The results of KEGG assays indicated that the 40 differential expressed FRGs were mainly enriched in the longevity regulating pathway, AMPK signaling pathway, the mTOR signaling pathway, and hepatocellular carcinoma. Subsequently, HSPB1, CDKN2A, LPIN1, MTDH, DCAF7, TRIM26, PIR, BCAT2, EZH2, and ADAMTS13 were identified as potential diagnostic biomarkers. ROC assays confirmed the diagnostic value of the new model. The expression of some FRGs among 11 FRGs was further confirmed by the GSE84402 dataset and TCGA datasets. Overall, our findings provided a novel diagnostic model using FRGs. Prior to its application in a clinical context, there is a need for additional research to evaluate the diagnostic value for HCC.

Publisher

Hindawi Limited

Subject

Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3