Hierarchical Contaminated Web Page Classification Based on Meta Tag Denoising Disposal

Author:

Song Xiang12ORCID,Zhu Yi2ORCID,Zeng Xuemei2ORCID,Chen Xingshu12ORCID

Affiliation:

1. Cyber Science Research Institute, Sichuan University, Chengdu 610065, China

2. School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, China

Abstract

Web page classification is critical for information retrieval. Most web page classification methods have the following two faults: (1) need to analyze based on the overall web page and (2) do not pay enough attention to the existence of noise information inside the web page, which will thus decrease the efficiency and classification performance, especially when classifying the contaminated web page. To solve these problems, this paper proposes a denoising disposal algorithm. We choose the top-down method for hierarchical classification to improve the prediction efficiency. The experimental results demonstrate that our method is about 7 times faster than the full-page method and achieves good classification results in most categories. The precision of 7 parent categories is all above 88% and is 24% higher than the other meta tag-based method on average.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Targeted and Troublesome: Tracking and Advertising on Children’s Websites;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

2. Web Page Prediction Model using Machine Learning Approaches: A Review;2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG);2023-04-05

3. Web Page Classification Algorithm Based on Deep Learning;Computational Intelligence and Neuroscience;2022-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3