Affiliation:
1. School of Civil Engineering, Central South University, Changsha, China
2. School of Civil Engineering, Anhui Jianzhu University, Hefei, China
Abstract
Railway engineering generates large amounts of construction and demolition waste (CDW). To quantify the amount of CDW generated from railway engineering projects throughout the whole life cycle, a process-based life cycle assessment model is proposed in this paper. The life-cycle CDW is divided into four parts: CDW from off-site transportation of construction materials (OSTCM), CDW from site operation wastage of construction materials (SOWCM), discard ballast from roadbeds, stationyard, bridges and tunnels (DB), and CDW from reparation and renewal of aging components (RRAC). Yun-Gui Railway is selected as a case study to validate the developed model, and an uncertainty analysis is conducted with Oracle Crystal Ball software. The results show that between 175 and 311 million tons of CDW is generated throughout the whole life cycle of Yun-Gui Railway. DB is the largest component of the life-cycle CDW from railway engineering projects. This indicates the negative environmental impacts of railway construction can be significantly mitigated by optimizing the location of ballast disposal sites and developing suitable landfill proposals. Also, the CDW generated by wastage of construction materials during off-site construction and site operation is important in waste management in railway engineering projects, in which rubble, sand, and cement have the high potential for waste reduction. Findings from this study can contribute to the knowledge body as well as the engineering practice in green railways.
Funder
Science and Technology R & D Program of China Railway Corporation Limited
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献