Affiliation:
1. Command & Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China
Abstract
As an important deception defense method, a honeypot can be used to enhance the network’s active defense capability effectively. However, the existing rigid deployment method makes it difficult to deal with the uncertain strategic attack behaviors of the attackers. To solve such a problem, we propose a multiphase dynamic deployment mechanism of virtualized honeypots (MD2VH) based on the intelligent attack path prediction method. MD2VH depicts the attack and defense characteristics of both attackers and defenders through the Bayesian state attack graph, establishes a multiphase dynamic deployment optimization model of the virtualized honeypots based on the extended Markov’s decision-making process, and generates the deployment strategies dynamically by combining the online and offline reinforcement learning methods. Besides, we also implement a prototype system based on software-defined network and virtualization container, so as to evaluate the effectiveness of MD2VH. Experiments results show that the capture rate of MD2VH is maintained at about 90% in the case of both simple topology and complex topology. Compared with the simple intelligent deployment strategy, such a metric is increased by 20% to 60%, and the result is more stable under different types of the attacker’s strategy.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,Information Systems
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献