Resource Allocation in D2D‐Enabled 5G Networks Using Multiagent Reinforcement Learning

Author:

Obour Agyekum Kwame Opuni-BoachieORCID,Boakye Alex Yaw,Appati Benedict,Opoku Jochebed Akoto,Agyemang Justice OwusuORCID,Boateng Gordon OwusuORCID,Gadze James DzisiORCID

Abstract

Device‐to‐device (D2D) communication is a promising technology in fifth‐generation (5G) wireless networks, offering enhanced system capacity, spectrum performance, and energy efficiency. However, D2D links can introduce interference with cellular links, posing challenges in spectrum allocation and network quality assurance. This paper presents a novel approach using multiagent reinforcement learning with a proximal policy optimization algorithm to address the resource allocation problem in D2D networks. The proposed algorithm aims to optimize overall throughput and maximize the signal‐to‐interference noise ratio (SINR) while ensuring low computational complexity. The study introduces the following two key techniques: staggered training and decentralized execution. Staggered training improves agent performance and minimizes computational complexity by training agents one at a time in a sequential manner. This allows agents to learn from each other’s mistakes and avoid local minima. Decentralized execution enhances scalability and system robustness by enabling agents to learn and act independently without relying on communication with other agents. In the event of agent failure, the remaining agents can continue operating. The findings of this work demonstrate a significant improvement in energy efficiency (EE) and an enhancement in the quality of service (QoS) of the network. Overall, the algorithm proves to be a promising solution for resource allocation in multiagent D2D networks, offering notable improvements in EE and QoS while maintaining scalability for large networks.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3