Supervised Expert System for Wearable MEMS Accelerometer-Based Fall Detector

Author:

Rescio Gabriele1ORCID,Leone Alessandro1ORCID,Siciliano Pietro1

Affiliation:

1. Institute for Microelectronics and Microsystems, Italian National Research Council (CNR), Via Monteroni, c/o Campus Università del Salento, Palazzina A3, 73100 Lecce, Italy

Abstract

Falling is one of the main causes of trauma, disability, and death among older people. Inertial sensors-based devices are able to detect falls in controlled environments. Often this kind of solution presents poor performances in real conditions. The aim of this work is the development of a computationally low-cost algorithm for feature extraction and the implementation of a machine-learning scheme for people fall detection, by using a triaxial MEMS wearable wireless accelerometer. The proposed approach allows to generalize the detection of fall events in several practical conditions. It appears invariant to the age, weight, height of people, and to the relative positioning area (even in the upper part of the waist), overcoming the drawbacks of well-known threshold-based approaches in which several parameters need to be manually estimated according to the specific features of the end user. In order to limit the workload, the specific study on posture analysis has been avoided, and a polynomial kernel function is used while maintaining high performances in terms of specificity and sensitivity. The supervised clustering step is achieved by implementing an one-class support vector machine classifier in a stand-alone PC.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3