Traversable Ground Surface Segmentation and Modeling for Real-Time Mobile Mapping

Author:

Song Wei1ORCID,Cho Seoungjae2,Cho Kyungeun3,Um Kyhyun3ORCID,Won Chee Sun4,Sim Sungdae5

Affiliation:

1. Department of Computer Science & Technology, North China University of Technology, Beijing 100-144, China

2. Department of Multimedia Engineering, Graduate School of Dongguk University-Seoul, Seoul 100-715, Republic of Korea

3. Department of Multimedia Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea

4. Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea

5. Agency for Defense Development, Daejeon 305-152, Republic of Korea

Abstract

Remote vehicle operator must quickly decide on the motion and path. Thus, rapid and intuitive feedback of the real environment is vital for effective control. This paper presents a real-time traversable ground surface segmentation and intuitive representation system for remote operation of mobile robot. Firstly, a terrain model using voxel-based flag map is proposed for incrementally registering large-scale point clouds in real time. Subsequently, a ground segmentation method with Gibbs-Markov random field (Gibbs-MRF) model is applied to detect ground data in the reconstructed terrain. Finally, we generate a texture mesh for ground surface representation by mapping the triangles in the terrain mesh onto the captured video images. To speed up the computation, we program a graphics processing unit (GPU) to implement the proposed system for large-scale datasets in parallel. Our proposed methods were tested in an outdoor environment. The results show that ground data is segmented effectively and the ground surface is represented intuitively.

Funder

Agency for Defense Development, Republic of Korea

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3