Ginsenoside Rg3 Alleviates Antithyroid Cancer Drug Vandetanib-Induced QT Interval Prolongation

Author:

Zhang Juan1,Luo Dan1,Li Fang1,Li Zhiyi1,Gao Xiaoli1,Qiao Jie1,Wu Lin12ORCID,Li Miaoling1ORCID

Affiliation:

1. Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China

2. Department of Cardiology, Peking University First Hospital, Beijing, China

Abstract

Inhibition of human ether-a-go-go-related gene (hERG) potassium channel is responsible for acquired long QT syndromes, which leads to life-threatening cardiac arrhythmia. A multikinase inhibitor, vandetanib, prolongs the progression-free survival time in advanced medullary thyroid cancer. However, vandetanib has been reported to induce significant QT interval prolongation, which limits its clinical application. Some studies have showed that ginsenoside Rg3 decelerated hERG K(+) channel tail current deactivation. Therefore, in this study, we aim to confirm whether ginsenoside Rg3 targeting hERG K(+) channel could be used to reverse the vandetanib-induced QT interval prolongation. Electrocardiogram (ECG) and monophasic action potential (MAP) were recorded using electrophysiology signal sampling and analysis system in Langendorff-perfused rabbit hearts. The current clamp mode of the patch-clamp technique was used to record transmembrane action potential. The whole-cell patch-clamp technique was used to record the hERG K+ current. In Langendorff-perfused hearts, vandetanib prolonged the QT interval in a concentration-dependent manner with an IC50 of 1.96 μmol/L. In human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), vandetanib significantly prolonged the action potential duration at 50%, 70%, and 90% repolarization (APD50, APD70, and APD90). In stable transfected human hERG gene HEK293 cells, vandetanib caused concentrate-dependent inhibition in the step and tail currents of hERG. As expected, ginsenoside Rg3 relieved vandetanib-induced QT interval prolongation in Langendorff-perfused heart and reversed vandetanib-induced APD prolongation in hiPSC-CMs. Furthermore, ginsenoside Rg3 alleviated vandetanib-induced hERG current inhibition and accelerated the process of the channel activation. Ginsenoside Rg3 may be a promising cardioprotective agent against vandetanib-induced QT interval prolongation through targeting hERG channel. These novel findings highlight the therapeutic potential of ginsenoside to prevent vandetanib-induced cardiac arrhythmia.

Funder

Southwest Medical University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3