Neural Network with Confidence Kernel for Robust Vibration Frequency Prediction

Author:

Liu Jiantao1ORCID,Yang Xiaoxiang12ORCID,Zhu Mingzhu1

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China

2. Quanzhou Normal University, Quanzhou, Fujian 362000, China

Abstract

Image-based measurement has received increasing attention as it can substantially reduce the cost of labor, measurement equipment, and installation process. Instead of using optical flow, pattern, or marker tracking to extract a displacement signal, in this study, a novel noncontact machine learning-based system was proposed to directly predict vibration frequency with high accuracy and good reliability by using image sequences acquired from a single camera. The performance of the proposed method was demonstrated through experiments conducted in a laboratory and under real-field conditions and compared with those obtained using a contacted sensor. The vibration frequency prediction results of the proposed method are compared with industry-level vibration sensor results in the frequency domain, demonstrating that the proposed method could predict the target-object-vibration frequency as accurately as an industry-level vibration sensor, even under uncontrollable real-field conditions with no additional enhancement or extra signal processing techniques. However, only the principal vibration frequency of a measurement target is predicted, and the measurement range is limited by the trained model. Nonetheless, if these limitations are resolved, this method can potentially be used in real engineering applications in mechanical or civil structural health monitoring thanks to the simple deployment and concise pipeline of this method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3