The Effect of Yttrium Addition on the Microstructures and Electrical Properties of CuMn Alloy Thin Films

Author:

Lee Ho-Yun1,He Chi-Wei2,Lee Ying-Chieh2ORCID

Affiliation:

1. Department of Material Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

2. Department of Materials Engineering, National Pingtung University of Science & Technology, Pingtung 91201, Taiwan

Abstract

In this study, we fabricated thin-film resistors using CuMn and yttrium targets by DC/RF magnetron cosputtering. CuMnY-resistive thin films were deposited onto glass and Al2O3 substrates. The electrical properties and microstructures of CuMn alloy films with different yttrium content were investigated. The CuMnY films were annealed at temperature ranging from 250°C to 350°C in N2 atmosphere. The phase variation, microstructure, film thickness, and constitutional analysis of CuMnY films were characterized using X-ray diffraction, field emission scanning, and high-resolution transmission electron microscopy and related energy dispersive X-ray analyses (XRD, FESEM, and HRTEM/EDX). It was found that CuMnY alloy films separated into two parts after annealing. The first part is the MnO phase on the bottom side of the film. The second part is an amorphous structure on the upper side of the film. The MnO phase is a microcrystalline that exists in CuMn films, which is dependent on the Y content and annealing temperature. CuMn alloy films with 15.7% yttrium addition annealed at 300°C exhibited higher resistivity ∼4000 μΩ-cm with −41 ppm/°C of temperature coefficient of resistance (TCR).

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3