Affiliation:
1. School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
2. Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
Abstract
Vacuole compartmentalization plays an important role in the storage of heavy metals in hyperaccumulators. Is the vacuolar compartmentation a simple shielding process or a dynamic process that continuously consumes cell sap resources? How does glutathione affect the process of vacuolar compartmentalization? These unknown questions are very important to understand the mechanism of vacuole compartmentalization and can provide a guide for the design of hyperaccumulator plants by genetic engineering. Therefore, this study explored the enzyme activities, total cadmium, Cd2+, glutathione, oxidized glutathione, and reactive oxygen species contents in protoplasts and vacuoles of leaf cells in Solanum nigrum L. through subcellular separation. The results showed that vacuolar compartmentalization was a dynamic process that actively induced the related substances produced by cell sap to enter the vacuole for detoxification. When regulating the decreased glutathione content with buthionine sulfoximine, the total cadmium and combined cadmium in protoplasm decreased significantly, but the vacuole still maintained a high proportion of cadmium content and stable ROS content, which indicated that various external resources were preferentially used to maintain cadmium storage and homeostasis in vacuole rather than outside vacuole. These findings could guide the use of genetic engineering to design hyperaccumulator plants.
Funder
Environmental Protection Research Project of Jiangsu Province
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献