Affiliation:
1. Department of Reinforced Concrete Structures and Geotechnics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
Abstract
The present study focuses on a prediction of crack width and load-carrying capacity of flexural reinforced concrete (RC) elements strengthened with fibre-reinforced polymer (FRP) reinforcements. Most studies on cracking phenomena of FRP-strengthened RC structures are directed to empirical corrections of crack-spacing formula given by design norms. Contrary to the design norms, a crack model presented in this paper is based on fracture mechanics of solids and is applied for direct calculation of flexural crack parameters. At the ultimate stage of crack propagation, the load-carrying capacity of the element is achieved; therefore, it is assumed that the load-carrying capacity can be estimated according to the ultimate crack depth (directly measuring concrete’s compressive zone height). An experimental program is presented to verify the accuracy of the proposed model, taking into account anchorage and initial strain effects. The proposed analytical crack model can be used for more precise predictions of flexural crack propagation and load-carrying capacity.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献