Affiliation:
1. Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
2. School of Applied Science, Beijing Information Science & Technology University, Beijing 100192, China
Abstract
This paper investigates the expression and properties of Green’s function for a second-order singular boundary value problem with integral boundary conditions and delayed argument-x′′t-atx′t+btxt=ωtft, xαt, t∈0, 1; x′0=0, x1-∫01htxtdt=0, wherea∈0, 1, 0, +∞, b∈C0, 1, 0, +∞and,ωmay be singular att=0or/and att=1. Furthermore, several new and more general results are obtained for the existence of positive solutions for the above problem by using Krasnosel’skii’s fixed point theorem. We discuss our problems with a delayed argument, which may concern optimization issues of some technical problems. Moreover, the approach to express the integral equation of the above problem is different from earlier approaches. Our results cover a second-order boundary value problem without deviating arguments and are compared with some recent results.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献