A Framework for Coxeter Spectral Classification of Finite Posets and Their Mesh Geometries of Roots

Author:

Simson Daniel1,Zając Katarzyna1ORCID

Affiliation:

1. Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Ulica Chopina 12/18, 87-100 Toruń, Poland

Abstract

Following our paper [Linear Algebra Appl. 433(2010), 699–717], we present a framework and computational tools for the Coxeter spectral classification of finite posetsJ(J,). One of the main motivations for the study is an application of matrix representations of posets in representation theory explained by Drozd [Funct. Anal. Appl. 8(1974), 219–225]. We are mainly interested in a Coxeter spectral classification of posetsJsuch that the symmetric Gram matrixGJ:=(1/2)[CJ+CJtr]𝕄J()is positive semidefinite, whereCJ𝕄J()is the incidence matrix ofJ. Following the idea of Drozd mentioned earlier, we associate toJits Coxeter matrixCoxJ:=-CJ·CJ-tr, its Coxeter spectrumspeccJ, a Coxeter polynomialcoxJ(t)[t], and a Coxeter number  cJ. In caseGJis positive semi-definite, we also associate toJa reduced Coxeter number  čJ, and the defect homomorphismJ:J. In this case, the Coxeter spectrumspeccJis a subset of the unit circle and consists of roots of unity. In caseGJis positive semi-definite of corank one, we relate the Coxeter spectral properties of the posetsJwith the Coxeter spectral properties of a simply laced Euclidean diagramDJ{𝔻̃n,𝔼̃6,𝔼̃7,𝔼̃8}associated withJ. Our aim of the Coxeter spectral analysis of such posetsJis to answer the question when the Coxeter typeCtypeJ:=(speccJ,cJ,  čJ)ofJdetermines its incidence matrixCJ(and, hence, the posetJ) uniquely, up to a-congruency. In connection with this question, we also discuss the problem studied by Horn and Sergeichuk [Linear Algebra Appl. 389(2004), 347–353], if for any-invertible matrixA𝕄n(), there isB𝕄n()such thatAtr=Btr·A·BandB2=Eis the identity matrix.

Publisher

Hindawi Limited

Subject

Mathematics (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On algorithmic Coxeter spectral analysis of positive posets;Applied Mathematics and Computation;2020-12

2. A Coxeter type classification of one-peak principal posets;Linear Algebra and its Applications;2019-12

3. On the structure of loop-free non-negative edge-bipartite graphs;Linear Algebra and its Applications;2019-10

4. Strengthening of a theorem on Coxeter–Euclidean type of principal partially ordered sets;Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics;2018

5. Inflation algorithm for loop-free non-negative edge-bipartite graphs of corank at least two;Linear Algebra and its Applications;2017-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3