Affiliation:
1. IREM de l’Université Abdou Moumouni, BP 10896 Niamey, Niger
Abstract
The outbreak of the Coronavirus (COVID-19) pandemic around the world has caused many health and socioeconomic problems, and the identification of variants like Delta and Omicron with similar and often even more transmissible modes of transmission has motivated us to do this study. In this article, we have proposed and analyzed a mathematical model in order to study the effect of health precautions and treatment for a disease transmitted by contact in a constant population. We determined the four equilibria of the system of ordinary differential equations representing the model and characterized their existence using exact methods of algebraic geometry and computer algebra. The model is studied using the stability theory for systems of differential equations and the basic reproduction number
. The stability of the equilibria is analyzed using the Lienard-Chipart criterion and Lyapunov functions. The asymptotic or global stability of endemic equilibria is established, and the disease-free equilibrium is globally asymptotically stable if
. Model simulation is done with Python software to study the effects of health precautions and treatment, and the results are analyzed. It is observed that if the rate of treatment and compliance with health precautions are high, the number of infections decreases in the classes of infectious and is canceled out over time. It is concluded that the high treatment rate accompanied by a suitable rate of compliance with health precautions allows for the control the disease.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献