Kinetics and Mechanistic Study of Permanganate Oxidation of Fluorenone Hydrazone in Alkaline Medium

Author:

Fawzy Ahmed12ORCID,Ahmed Saleh A.12ORCID,Althagafi Ismail I.1,Morad Moataz H.1,Khairou Khalid S.1

Affiliation:

1. Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia

2. Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

Abstract

The oxidation kinetics of fluorenone hydrazone (FH) using potassium permanganate in alkaline medium were measured at a constant ionic strength of 0.1 mol dm−3 and at 25°C using UV/VIS spectrophotometer. A first-order kinetics has been monitored in the reaction of FH with respect to [permanganate]. Less-than-unit order dependence of the reaction on [FH] and [OH] was revealed. No pronounced effect on the reaction rate by increasing ionic strength was recorded. Intervention of free radicals was observed in the reaction. The reaction mechanism describing the kinetic results was illustrated which involves formation of 1 : 1 intermediate complex between fluorenone hydrazones and the active species of permanganate. 9H-Fluorenone as the corresponding ketone was found to be the final oxidation product of fluorenone hydrazone as confirmed by GC/MS analysis and FT-IR spectroscopy. The expression rate law for the oxidation reaction was deduced. The reaction constants and mechanism have been evaluated. The activation parameters associated with the rate-limiting step of the reaction, along with the thermodynamic quantities of the equilibrium constants, have been calculated and discussed.

Publisher

Hindawi Limited

Subject

Physical and Theoretical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3