Affiliation:
1. Institute of Geophysics, National Academy of Sciences of Ukraine, Kyiv 01054, Ukraine
2. Department of Mathematics & Statistics, University of Strathclyde, Glasgow G1 1XH, UK
Abstract
A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE) as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE), by a change of independent variables. The VPE has anN-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprisesN-loop-like solitons. Aspects of the inverse scattering transform (IST) method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads toN-soliton solutions andM-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.
Subject
Applied Mathematics,General Physics and Astronomy
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献