Design of Miniaturized FSS with High Angular Stability Utilizing a Novel Closed Loop

Author:

Li Wei1ORCID,Zhang Fengshuo1,Suo Ying1ORCID,Jiang Zhe1,Qiu Jinghui1ORCID

Affiliation:

1. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China

Abstract

In this paper, we propose a miniaturized 2.5-dimensional (2.5D) frequency selective surface (FSS) structure with high angular stability. A novel closed-loop FSS is formed by combining the Jerusalem cross (JC) structure with the conventional rectangular closed loop using vias. This approach further enhances the coupling performance of the FSS and thus achieves miniaturized design. The unit cell size of the proposed FSS is 0.019λ0 × 0.019λ0 at the resonant frequency, and the metal is printed on a dielectric substrate with a thickness of 0.003λ0. The proposed FSS has a resonant frequency of 850 MHz and exhibits band-stop characteristics. It is insensitive to the incident angle with a good operating performance in both the TE and TM wave modes. Therefore, it can be well used as an electromagnetic shield for the GSM 850 band. In order to facilitate the rapid analysis and design of the FSS, the equivalent circuit model is further analyzed and established, and values of the corresponding lumped components are derived. In addition, a prototype FSS is fabricated using printed circuit board technology and is tested in a microwave anechoic chamber. The full-wave analysis simulation, equivalent circuit model simulation, and practical measurement results reflect a high level of consistency.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3