Three-Dimensional Prestressed Tuned Mass Damper for Passive Vibration Control of Coupled Multiple DOFs Offshore Wind Turbine

Author:

Lei Zhenbo1ORCID,Liu Gang12ORCID,Zhang Xuesen3,Yang Qingshan12,Law S. S.12

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing 400045, China

2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Ministry of Education, Chongqing 400045, China

3. CGN New Energy Holdings Co, Ltd., Beijing 100070, China

Abstract

Large megawatts offshore wind turbine (OWT) with low natural frequency and low damping is subjected to significant vibration from wind and wave actions in its service environment. The one-dimensional prestressed tuned mass damper (PSTMD) is further extended to a 3D-PSTMD for the control of vibrations of the OWT in this paper. A multiple DOFs coupled system of turbine, blades, tower, and foundation under aerodynamic and hydrodynamic forces is considered in this study of vibration mitigation at fore-aft and side-side directions. The dynamic model is derived with the Lagrangian equation, and the superiorities of the PSTMD are proved from the perspective of theoretical analysis. Aerodynamic and hydrodynamic loads are generated with the blade element momentum (BEM) theory and Morrison equation, and the dynamic responses of different systems are computed by using the Wilson-θ method. The analysis results indicate that a damping coefficient of the 3D-PSTMD corresponding to the first vibration mode can be tuned to take up values larger than that in traditional three-dimensional pendulum (TMD) (3D-PTMD). The bidirectional vibration suppression competences of the 3D-PSTMD in the dynamic responses when under aerodynamic and hydrodynamic loads are better than those of the traditional 3D-PTMD.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3