An Improved Hashing Approach for Biological Sequence to Solve Exact Pattern Matching Problems

Author:

Mahmud Prince1ORCID,Rahman Anisur1,Hasan Talukder Kamrul1

Affiliation:

1. Computer Science and Engineering Discipline, Khulna University, Khulna 9208, Bangladesh

Abstract

Pattern matching algorithms have gained a lot of importance in computer science, primarily because they are used in various domains such as computational biology, video retrieval, intrusion detection systems, and fraud detection. Finding one or more patterns in a given text is known as pattern matching. Two important things that are used to judge how well exact pattern matching algorithms work are the total number of attempts and the character comparisons that are made during the matching process. The primary focus of our proposed method is reducing the size of both components wherever possible. Despite sprinting, hash-based pattern matching algorithms may have hash collisions. The Efficient Hashing Method (EHM) algorithm is improved in this research. Despite the EHM algorithm’s effectiveness, it takes a lot of time in the preprocessing phase, and some hash collisions are generated. A novel hashing method has been proposed, which has reduced the preprocessing time and hash collision of the EHM algorithm. We devised the Hashing Approach for Pattern Matching (HAPM) algorithm by taking the best parts of the EHM and Quick Search (QS) algorithms and adding a way to avoid hash collisions. The preprocessing step of this algorithm combines the bad character table from the QS algorithm, the hashing strategy from the EHM algorithm, and the collision-reducing mechanism. To analyze the performance of our HAPM algorithm, we have used three types of datasets: E. coli, DNA sequences, and protein sequences. We looked at six algorithms discussed in the literature and compared our proposed method. The Hash-q with Unique FNG (HqUF) algorithm was only compared with E. coli and DNA datasets because it creates unique bits for DNA sequences. Our proposed HAPM algorithm also overcomes the problems of the HqUF algorithm. The new method beats older ones regarding average runtime, number of attempts, and character comparisons for long and short text patterns, though it did worse on some short patterns.

Funder

Ministry of Posts, Telecommunications and Information Technology, Government of People’s Republic of Bangladesh

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

Reference44 articles.

1. Pattern matching in file system;K. Vayadande

2. Simple and Efficient Pattern Matching Algorithms for Biological Sequences

3. A quantum algorithm for string matching

4. A survey of the hybrid exact string matching algorithms;F. Mohammed;Advances on Intelligent Informatics and Computing: Health Informatics, Intelligent Systems, Data Science and Smart Computing,2022

5. Biological sequence databases;A. D. Baxevanis,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DNA Pattern Matching Algorithms within Sorghum bicolor Genome: A Comparative Study;2024 7th International Conference on Informatics and Computational Sciences (ICICoS);2024-07-17

2. Hardware acceleration of DNA pattern matching using analog resistive CAMs;Frontiers in Electronics;2024-02-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3