Trajectory Similarity Matching and Remaining Useful Life Prediction Based on Dynamic Time Warping

Author:

Huang Lin1ORCID,Gong Li1,Chen Yutao1,Li Dongliang1,Zhu Guoqing1ORCID

Affiliation:

1. Navy University of Engineering, Wuhan 430033, China

Abstract

Remaining useful life prediction based on trajectory similarity is a typical example of instance-based learning. Hence, trajectory similarity prediction based on Euclidean distance has the problems of matching and low prediction accuracy. Therefore, an engine remaining useful life (RUL) prediction method based on dynamic time warping (DTW) is proposed. First, aiming at the problem of engine structure complexity and multiple monitoring parameters, the principal component analysis is used to reduce the dimension of multisensor signals. Then, the system performance degradation trajectory is extracted based on kernel regression. After obtaining the degradation trajectory database, the similarity matching of the degradation trajectory is carried out based on DTW. After finding the best matching curve, the RUL can be predicted. Finally, the proposed method is verified by the public aeroengine simulation dataset of NASA, and compared with several representatives and high-precision literature methods based on the same dataset, which verifies the effectiveness of the method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3